09-09-202

Course Code: 2020006

Roll No:

MLRS-R20

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech II Sem Regular End Examination, September 2021

Applied Physics (CSE, CSI, CSM, EEE, INF)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a) b)	Illustrate Heisenberg's uncertainty hypothesis. Describe Davisson and Germer experiment to demonstrate the wave character of electrons.	7M 7M	CO1 CO1	BL4 BL2
2	a) b)	Explain de-Broglie hypothesis. Derive Schrodinger's time independent wave equation for a particle.	7M 7M	CO1	BL4 BL5
3	a) b)	Distinguish between intrinsic and extrinsic semiconductors. Describe the construction and V-I characteristics of p-n junction diode.	7M 7M	CO2	BL2 BL2
4	a) b)	Show that the Hall coefficient is inversely proportional to the number of electrons per unit volume. Describe the device structure, characteristics and figure of merit of LED.	7M 7M	CO2	BL3 BL2
5	a) b)	Describe Radiative and Non-Radiative recombination mechanisms in semiconductors. Explain the structure, working principle and characteristics of Solar cell.	7M 7M	CO3	BL2 BL4
6	a) b)	Explain the terms 'pumping', 'coherence', and population inversion in the process of production of lasers. Describe the principle, construction and working principle of Ruby laser.	7M 7M	CO4	BL4 BL2
7	a) b)	Derive an expression for acceptance angle and hence define the numerical aperture. Explain the terms 'polarization', 'permittivity', and dielectric constant in dielectric materials	7M . 7M	CO5	BL5 BL4
8	a) b)	Derive Classius-Mossotti equation in case of solid dielectrics. Enlist the applications of magnetic materials in detail.	7M 7M	CO5	BL5 BL1