

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Regular End Examination, February-2022 Discrete Mathematics (CSM)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Define logical connectives?	2M	CO1	BL1
	b)	Write any two rules of inference?	2M	CO1	BL1
	c)	What is an equivalence Relation?	2M	CO2	BL1
	d)	Write about types of functions?	2M	CO2	BL1
	e)	Define Recursion?	2M	CO3	BL1
	f)	What is multinomial theorem?	2M	CO3	BL1
	g)	Define Recurrence relation?	2M	CO4	BL1
	h)	Solve $a_n=7a_n-1$, given $a_0=3$.	2M	CO4	BL1
	i)	Define Isomorphism?	2M	CO5	BL1
	j)	What are the algorithms used for finding minimum spanning tree?	2M	CO5	BL1

PART- B

(10*5 Marks = 50 Marks)

2	a)	Use truth table to show that (\PA (\QAR) \lor (\QAR) \lor (\PAR) \Leftrightarrow \R	5M	CO1	BL3	
	b)	Prove that $\exists x (P(x) \land S(x), \forall x (P(x) \rightarrow R(x)) \Rightarrow \exists x (R(x) \land S(x))$	5M	CO1	BL3	
		OR				
3		Obtain the Principal Conjunctive Normal Form of the formula S given by $(1P \rightarrow R) \land (Q \rightleftarrows P)$	10M	C01	BL3	
4	د.	For any two sets A and B Prove the following Identity A- $(A \cap B) = A-B$	5M	CO2	BL3	
4	a)	•				
	b)	If $A=\{1,2,3,4\}$ and $P=\{\{1,2\},\{3\},\{4\}\}$ is a partition of A. Find the equivalence relation determined by P.	5M	CO2	BL3	
OR						
5		Let A=(6,12,18,24,36,72), $a \le b$ if and only if a divides b . Draw Hasse diagram for it.	10M	CO2	BL2	

6	a)	How many ways can we distribute 14 indistinguishable balls in 4 numbered boxes so that each box is non empty	5M	CO3	BL2
	b)	Find the number of arrangements of the letters of MISSISSIPPI	5M	CO3	BL3
		OR			
7		A group of 8 scientists is composed of 5-psychologists and 3- sociologists, In how many ways can a committee of 5 be formed that has 3- psychologists and 2-sociologists	10M	CO3	BL3
8	a)	Find the coefficient of X10 in (X3 + X4 +)2	5M	C04	BL3
O	b)	Solve the recurrence relation a $n - 9a - 1 + 20a - 2 = 0$ with $a0 = -3$,	5M	CO4	BL3
	U	a1 = -10 using generating functions	0		
		OR			
9		Solve the following recurrence relation using characteristic roots an $+6$ an- $1 + 8$ an- $2 = 0$ and a $0 = 2$, a $1 = -7$	10M	CO4	BL3
10	a)	Draw binary search tree for the list: 2,1,5,6,8,9,7,3,4	5M	CO5	BL2
	b)	Find the chromatic number of the following i) Cn ii) Kn iii) Km,n	5M	CO5	BL3
		OR			
11		State and prove Euler's formula for a plane connected graph	10M	CO5	BL3

---00000---