

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supply End Examination, July-2022 Laplace Transforms Series Solutions and Complex Variables (EEE & ECE)

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1. a)	Find the Laplace transform of unit step function	2M	CO1	U
b)	State the conditions for the existence of a Laplace Transform	2M	CO1	R
c)	State Dirichlet's conditions for Fourier series	2M	CO2	R
d)	Explain briefly about Half range cosine series expansion of a function	2M	CO2	U
e)	Define ordinary point and singular point of a Differential Equation	2M	CO3	R
f)	Write Bessel's Differential equation of order n.	2M	CO3	U
g)	Write Cauchy Riemann equations in Cartesian coordinates.	2M	CO4	U
h)	Define Analytic function.	2M	CO4	R
i)	State Cauchy integral theorem	2M	CO5	R
j)	Find the residue of $f(z) = \frac{z^2}{(z-1)(z-2)^2}$ at $z=2$.	2M	CO5	U

PART-B

(10*5 Marks = 50 Marks)

2	a)	Using Laplace Transforms evaluate the integral $\int_{0}^{\infty} te^{-3t} \sin t dt$	5M	CO1	AP
	b)	Find Laplace transform of $f(t) = e^{-3t} (2\cos 5t - 3\sin 5t)$	5M	CO1	U
		OR			
3		Using Laplace transform method, Solve $\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = e^{-t}$, given that $x(0)=0$, $x^{t}(0)=1$.	10M	CO1	AN
4	a)	Find Fourier series of the function $f(x) = x^2$ on $0 < x < 4$.	5M	CO2	U
	b)	Find he Half range Cosine series of $f(x) = (x-1)^2$ in $0 < x < 1$.	5M	CO2	AP

5		Find the Fourier series expansion of $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$	10M	CO2	AN
6	a)	Prove that $J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)]$	5M	C03	U
	b)	Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} (sinx)$	5M	C03	AP
		OR			
7		Explain briefly about Orthogonality of Bessel functions.	10M	CO3	AN
8	a)	Discuss the analyticity of $f(z) = Z^2$	5M	C04	U
0	b)	Determine the Analytic function $f(z)$ whose real part is	5M	CO4	AP
	U)	$e^{2x}(x\cos 2y - y\sin 2y).$	JIM	COT	711
		OR			
9		Show that the function $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$ (z≠0), f(z)=0, z=0	10M	C04	AN
		is continuous and Cauchy Riemann equations are satisfied at the origin, yet $f'(0)$ does not exist.			
10	a)	Using Cauchy integral formula evaluate the integral $\oint_{c} \frac{e^{z}}{\left(z - \frac{\pi}{6}\right)^{3}} dz$,	5M	C05	U
		where $c: z =1$			
	h)		5M	CO5	AP
	b)	Apply Residue theorem to evaluate the integral $\oint \frac{1-2z}{z(z-1)(z-2)} dz$,	51.1	dob	***
		where $c: z =1.5$.			
		OR			
11		Find the Laurent's series expansion of $f(z) = \frac{z}{(z-1)(z-3)}$ in the	10M	CO5	AN
		region (i) $ z < 1$ (ii) $1 < z < 3$ (iii) $ z > 3$			

---00000---