

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Regular End Examination, February-2022 Laplace Transforms Series Solutions and Complex Variables (EEE & ECE)

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - In Part B, answer any one question from each unit.
 Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Find the Laplace Transform of Unit impulse function.	2M	CO1	U	
	b)	State the conditions for the existence of a Laplace Transform,	2M	CO1	R	
	c)	Discover the Fourier coefficient b_1 for $f(x) = \begin{cases} 0, & for -\pi < x < 0 \\ \sin x, & for 0 < x < \pi \end{cases}$	2M	CO2	U	
	d)	Brief about Half range sine series expansion of a function.	2M	CO2	U	
	e)	Define ordinary point and singular point of a Differential Equation.	2M	CO3	R	
	f)	Write Bessel's Differential equation of order n.	2M	CO3	U	
	g)	Define an analytic function.	2M	CO4	R	
	h)	Write Cauchy Riemann equations in Cartesian coordinates.	2M	CO4	U	
	i)	State Cauchy integral theorem.	2M	CO5	R	
	j)	Write a short note on the types of singularities.	2M	CO5	R	

PART-B

(10*5 Marks = 50 Marks)

2 a) Evaluate
$$L^{-1}\left[\frac{s+2}{\left(s^2+4s+5\right)^2}\right]$$
 5M CO1 U

b) Using Laplace transforms evaluate the integral $\int_{0}^{\infty}te^{-t}Sin2t\ dt$ 5M CO1 AP

OR

3 Using convolution theorem find $L^{-1}\left[\frac{1}{\left(s^2+a^2\right)^2}\right]$ 10M CO1 AN

a) Find the Fourier series for the function $f(x) = e^{-x}$ in $0 < x < 2\pi$. 5M CO2 U b) Find the Fourier series expansion of $f(x) = x \cos x$ in $(-\pi, \pi)$. 5M CO2 AP OR Obtain Fourier series for the function given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ 5 10M CO2 AN Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} (sinx)$ 6 10M CO3 AP OR 7 State and prove Orthogonality of Bessel functions. CO3 10M AN Determine the Analytic function f(z) whose real part is 5M C₀4 AP $e^{-x}(x\sin y - y\cos y)$. Prove that $f(z) = \sin z$ is analytic everywhere in the U 5M C₀4 complex plane, hence find $f^{l}(z)$. OR Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin 9 10M C04 AN even though Cauchy Riemann equations are satisfied thereat. Using Cauchy's integral formula, evaluate the integral $\oint \frac{e^{2z}}{(z+1)^4} dz$, 5M 10 a) CO5 AP where c: |z-1| = 3b) Evaluate $\oint \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where c: |z| = 35M U CO₅ Find the Laurent's Series of the function $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in 10M 11 CO5 AN the region 1 < |z + 1| < 3

---00000----