Find! 21-05-2021

Course Code: 2030005

Roll No:

MLRS-R20

MARRI LAXMAN REDDY TE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Regular End Examination, February-2022

Probability Distributions and Complex Variables (MECHANICAL ENGINEERING)

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Find the probability of getting a sum of 10. If we throw two dices.	2M	CO1	R
	b)	If A,B are events with P(A)=1/3 ,P(B)=1/4 and P(AUB)=1/2 then find i) $P(A \cap B)$ ii) $P(A^c \cap B)$.	2M	CO1	R
-	c)	A fair coin is tossed six times find the probability of getting four coins.	2M	CO2	R
	d)	Write four characteristics of Normal distribution.	2M	CO2	R
	e)	Write the formula for t-distribution.	2M	CO3	R
	f)	Write the Type-I error and Type -II error.	2M	CO3	R
	g)	State C-R equations.	2M	CO4	R
	h)	Define harmonic function.	2M	CO4	R
	i)	Evaluate $\oint (x - y + ix^2) dz$ along y=3x between (0, i+1)	2M	CO5	R
	j)	Evaluate $\int_{c}^{\cdot} \frac{e^{z}}{z-2} dz$ where C is $ z = 1$	2M	CO5	R

PART-B

(10*5 Marks = 50 Marks)

2	a) The probabilities that students A, B, C, D solve a problem are 1/3,										CO1	U
		2/5, 1/5 and 1/4 respectively. If all of them try to solve the problem,										
		that is t										
	b) The probability density of a variate X as follows										CO1	Ap
		X	0	1	2	3	4	5	6			
		P(X)	K	3K	5K	7K	9K	11K	13K			

Find i) K ii) Mean iii) Variance.

OR

In a blot factory machines A,B, C manufacture 20% 30% and 50% of 10M CO1 AP 3 the total of their output and 6%, 3% and 2% are defective .A bolt is drawn at random and found to be defective .find the probabilities this is manufactured from i) Machine A ii) Machine B iii) Machine C.

4	a)	Out of 800 families with 5 expect to have a) 3 boys	5M	CO2	U								
	b)	In a poission distribution i) $P(x \ge 1)$ ii) $p(2 \le x \le 1)$	5M	CO2	Ap								
					OR								
5		If X is a normal variate we the probabilities that $i)P(26 \le x \le 40)$ $ii)P(x)$	10M	CO2	Ap								
6	a)	Write short note on Null	5M	CO3	U								
	b)	A coin was tossed 960 tinhypothesis that the coin i		5M	CO3	Ap							
7		Two horses A and B were particular track with the horses have the same run Horse A Horse B	10M	CO3	Ар								
		Horse B	29	30	30	24	27	29					
8		Find most general analyt $u = x^2 - y^2 - x$.		10M	CO4	U							
					OR								
9		If $f(z) = u + iv$ is analytic,	10M	CO4	Ap								
10	a)	Expand $f(z) = \frac{1}{(1-z)(z-2)}$		5M	CO5	U							
¥	b)	Using Cauchy's residue the circle $ z = 3$.	e c is	5M	CO5	Ap							
OR													
11		Using Cauchy's integral for is the circle $ z-2 = \frac{1}{2}$.	10M	CO5	Ap								

---00000----