

## MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

## II B.Tech I Sem Supply End Examination, July-2022 Engineering Mechanics

(Mechanical Engineering)

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

## PART- A

(10\*2 Marks = 20 Marks)

| 1. a) | What are the equations of equilibrium of a body in two dimensions and in three dimensions? | 2M | C01 | BL2 |
|-------|--------------------------------------------------------------------------------------------|----|-----|-----|
| b)    | State of varignon's theorem.                                                               | 2M | CO1 | BL1 |
| c)    | Define the following. i) Angle of friction ii) Limiting friction                           | 2M | CO2 | BL1 |
| d)    | State the factors influencing friction.                                                    | 2M | CO2 | BL2 |
| e)    | What is the Difference between center of Gravity and center of mass?                       | 2M | CO3 | BL2 |
| f)    | Determine the centroid of the rectangle lamina 55 mm $\times$ 25 mm                        | 2M | CO3 | BL5 |
| g)    | Name the situations where area moment of inertia is used?                                  | 2M | CO4 | BL2 |
| h)    | What is polar moment of inertia of an area?                                                | 2M | CO4 | BL1 |
| i)    | What is general plane motion? Give one example.                                            | 2M | CO5 | BL1 |
| j)    | Under what circumstances the work energy method is used?                                   | 2M | CO5 | BL2 |

## **PART-B**

(10\*5 Marks = 50 Marks)

| 2 | a) | Derive for the minimum force acting horizontally the inclined plane required which will keep the body in equilibrium if the body is | 5M | CO1 | BL2 |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
|   |    | sliding downward.                                                                                                                   |    |     |     |
|   | b) | A ball of weight W is suspended from a string of length l and is                                                                    | 5M | CO1 | BL3 |
|   |    | pulled by a horizontal force Q. The weight is displaced by a distance                                                               |    |     |     |
|   |    | d from the vertical position as shown in Figure. Determine the angle                                                                |    |     |     |
|   |    | $\alpha$ , forces Q and tension in the string S in the displaced position.                                                          |    |     |     |



|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| 3  |    | a) State the characteristics of a force? b) A triangle ABC has its side AB=40mm along positive x axis and side BC=30mm in positive y axis. Three forces 40N, 50N & 30N acts along the sides AB, BC & CA respectively. determine magnitude of the resultant of such system of forces.                                                                                                | 10M | CO1 | BL6 |
| 4  | a) | A ladder 5 m long rests on a horizontal ground and leans against a smooth vertical wall at an angle of $70^{\circ}$ with the horizontal. The weight of the ladder is 300 N. The ladder is on the verge of sliding when a man weighing 750 N stands on a rung 1.5 m high. Calculate the coefficient of friction between the ladder and the floor.                                    | 5M  | CO2 | BL5 |
|    | b) | Obtain the relation for moment due to effort and load to be raised is a screw jack.                                                                                                                                                                                                                                                                                                 | 5M  | CO2 | BL3 |
|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| 5  |    | A block weighing 500N just starts moving down a rough inclined plane when supported by a force of 200N acting parallel to the plane in upward direction. The same block is on the verge of moving up the plane when pulled by a force of 300N acting parallel to the plane. Find the inclination of the plane and coefficient of friction between the inclined plane and the block. | 10M | CO2 | BL6 |
| 6  | a) | State and prove Pappus theorems of area and volume.                                                                                                                                                                                                                                                                                                                                 | 5M  | CO3 | BL2 |
| U  | b) | Determine the centre of gravity of a right regular solid cone of radius 'R' and height 'h'.                                                                                                                                                                                                                                                                                         | 5M  | CO3 | BL4 |
|    |    | OR                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |
| 7  |    | Determine the center of gravity of a solid hemisphere of radius r from its diametral axis.                                                                                                                                                                                                                                                                                          | 10M | CO3 | BL3 |
| 8  | a) | Define principal axes and principal moment of inertia.                                                                                                                                                                                                                                                                                                                              | 5M  | CO4 | BL2 |
|    | b) | Determine the mass moment of inertia of a sphere of radius r and mass m about an axis passing through its origin. Assume the density of sphere material is constant.                                                                                                                                                                                                                | 5M  | CO4 | BL4 |
| OR |    |                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |
| 9  |    | From the first principles, find the moment of inertia of a circular plate of radius 'R' about its diametral axis.                                                                                                                                                                                                                                                                   | 10M | CO4 | BL3 |

10 a) Derive the expression for work-energy of a body in motion.

5M CO5 BL2 5M CO5 BL4

b) Determine the tension in the cord supporting body C in figure. The pulleys are frictionless and of negligible weight.



OR

The disk as shown in fig rolls freely on a horizontal track. Compute 10M CO5 BL5 the angular velocity of the disk after its Centre has moved 3 m from rest. Use work-energy method.



---00000---