

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Regular End Examination, February-2022

Thermodynamics (MECHANICAL ENGINEERING)

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What are various types of systems?	2M	CO1	BL1
	b)	Define thermometric property.	2M	CO1	BL1
	c)	What is PMM-I?	2M	CO2	BL1
	d)	How do apply steady flow energy equation to a nozzle.	2M	CO2	BL1
	e)	What is a heat engine? Explain with the help of a diagram.	2M	CO3	BL1
	f)	Write the statements of second law of Thermodynamics.	2M	CO3	BL1
	g)	Define dryness fraction of steam.	2M	CO4	BL1
	h)	Define Dalton's law of partial pressure.	2M	CO4	BL1
	i)	Draw the p-v and T-s plots of Otto cycle.	2M	CO5	BL1
	j)	Draw the layout of Brayton cycle.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	What is concept of thermo dynamic equilibruim? Explain.	5M	CO1	BL4		
	b)	Differentiate between microscopic and macroscopic properties.	5M	CO1	BL2		
OR .							
3		What is ideal gas temperature scale? How was it developed?	10M	CO1	BL2		
4	a)	Discuss the application of thermodynamics to a closed system.	5M	CO2	BL2		
	b)	"In an isolated system, the energy of the system remains constant". Explain.	5M	CO2	BL4		
OR							
5		What are the assumptions made in steady flow energy equation derivation? Discuss the applications in detail.	10M	CO2	BL2		

6	a)	Explain Carnot cycle with the help of p-v and T-s diagrams.	5M	CO3	BL4		
	b)	State and prove Clausius in equality.	5M	CO3	BL3		
		OR .					
7		State and prove Equivalence of kelvin Plank and Clausius Statements.	10M	CO3	BL3		
8	a)	How do you determine specific volume, density, entropy and specific heats of mixture of gases?	5M	CO4	BL2		
*	b)	A vessel of volume $0.04~\rm m^3$ contains a mixture of saturated water and saturated steam at a temperature of $250^{\rm o}$ C. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy, the internal energy.	5M	CO4	BL3		
	OR						
9		Prove the work done equation for adiabatic process.	10M	CO4	BL3		
10	a)	Draw the Layout, p-v and T-s diagrams of Rankine cycle and derive expression for efficiency.	5M	CO5	BL2		
	b)		5M	CO5	BL2		
OR							
11		Derive the expression for work done, thermal efficiency, mean effective pressure of Diesel cycle.	10M	CO5	BL6		