

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 Data Warehousing and Data Mining (CSD)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

		PARI-A						
		(10*2 Mark	cs = 20) Marks)			
1.	a)	What is Data Warehousing?	2M	CO1	L1			
	b)	What are apex and base Cuboid?	2M	CO1	L1			
	c)	What is Data Mining?	2M	CO2	L1			
	d)	What are the measures used for central tendency of Data?	2M	CO3	L2			
	e)	What is Information gain?	2M	CO3	L1			
	f)	Classification Vs Prediction.	2M	CO4	L2			
	g)	Give one example for multi dimension association rule.	2M	CO4	L3			
	h)	What is Apriori Property?	2M	CO4	L1			
	i)	List various clustering approaches.	2M	CO4	L1			
	j)	Is outlier noise or knowledge? Explain.	2M	CO5	L3			
		PART- B	s - 50	Marks)				
		(10°5 Marks	(10*5 Marks = 50 Marks)					
2	a)	Compare OLTP Vs OLAP.	5M	C01	L1			
	b)	Discuss the steps in building Data warehouse.	5M	CO1	L1			
		OR						
3		Discuss the various operations of OLAP with simple examples.	10M	CO1	L2			
4	a)	Why Data preprocessing is needed? What is the role of data cleaning in preprocessing?	5M	CO2	L2			
	b)	How Data Discretization is useful in data preprocessing?	5M	CO2	L2			

OR

CO2

10M

L3

Use the two methods below to normalize the following group of data 200, 300, 400, 600 1000

a) Min max normalization by setting min=0 and max=1

b) Z-score normalization.

5

6	a)	Explain the major steps in decision tree construction for classification.	5M	C03	L2
	b)	Why KNN is called lazy learner? Explain.	5M	CO3	L3
		OR			
-					
7		Discuss the various criteria used for evaluating classifier models.	10M	CO3	L2
8	a)	Discuss "Mining Quantitative Association rules".	5M	C04	L2
	b)	Strong Association rules are not necessarily Interesting. Explain.	5M	CO4	L3
		OR			
		A database has five transactions. Let min_sup=60% and min_conf=80%. Find all frequent items using Apriori.			
		TID items			
_		1 M,O,N,K,E,Y			
9		2 D,O,N,K,E,Y	10M	CO4	L3
		3 M,A,K,E			
		4 M,U,C,K,Y			
		5 C,O,O,K,I,E			
		How to compute the dissimilarity hot were abjects described by the			
		How to compute the dissimilarity between objects described by the			
10	a)	following types of variables a) Numerical	5M	CO3	L1
		b) categorical			
		Given two objects by the tuples(22,1,42,10) and (20,0,36,8)			
	b)	compute the Euclidean distance and Manhattan distance	5M	CO3	L2
		OR			
		Describe each of the following clustering algorithms in terms of the			
11		following criteria:	10M	CO5	L3
		(i) Shapes of clusters that can be determined.(ii) Input parameters that must be specified.			
		(ii) input parameters that must be specified.			

---00000---