MARRI LAXMAN REDDY TE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 **Analog and Digital Communications** (ECE)

Max. Marks: 70 Time: 3 Hours.

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Define and discuss the need for modulation.	2M	CO1	BL1
	b)	Draw the standard amplitude modulated waveform for a single tone message signal with various different values of modulation index 0.25, 0.75 and 1.	2M	CO1	BL2
	c)	Compute the bandwidth of FM for a frequency deviation of 75 kHz and maximum modulating signal frequency of 15kHz.	2M	CO2	BL2
	d)	Give the comparison of TDM and FDM.	2M	CO2	BL1
	e)	Draw the block diagram of a digital communication system.	2M	CO3	BL2
	f)	Illustrate the importance of eye diagrams in analysis of digital communication system	2M	CO3	BL3
	g)	Compare the coherent and non-coherent methods for demodulation of band pass data transmission.	2M	CO4	BL1
	h)	Give the bit rate for ASK, FSK, PSK and M-ary schemes.	2M	CO4	BL2
	i)	List the properties of narrow band representation of noise.	2M	CO5	BL1
	j)	Define amount of information, entropy and channel capacity.	2M	CO5	BL2

PART-B

(10*5 Marks = 50 Marks)

2	a) b)	Explain the generation of AM wave using switching modulator. Illustrate the demodulation of SSB-SC using synchronous demodulator.	5M 5M	CO1	BL4 BL2
		OR			
3		Draw and explain the block diagram of super heterodyne receiver. Elaborate the discussion on envelope detector.	10M	CO1	BL4
4	a)	Explain the generation of FM using Armstrong method.	5M 5M	CO2	BL4 BL2
	b)	Discuss the demodulation of FM using balanced slope detector.	JIVI	002	שמע
		0.70			

	Course Code: 2040413 Roll No:		MLRS-R20					
5		Show that wide band FM has infinity sidebands, infinity bandwidth and has constant average power.	10M	CO2	BL3			
6	a)	Draw the modulated waveforms of PAM, PWM and PPM for a single	5M	C03	BL1			
	b)	message signal. Show that the matched filter receiver is an optimum receiver in terms of signal to noise ratio.	5M	CO3	BL3			
	OR							
7		Evaluate the performance of PCM, DPCM, DM and ADM with reference to noise considerations.	10M	CO3	BL5			
8	a)	Describe the generation and demodulation of FSK modulated signal.	5M	C04	BL2			
	b)	Compare the performance of all band pass transmission techniques with reference to bandwidth and probability of error.	5M	CO4	BL2			
		OR						
9		Derive an equation for probability of error for a coherent and non-coherent PSK demodulator	10M	CO4	BL6			
10	a)	Compute the figure of merit of standard AM using envelope detector.	5M	CO5	BL3			
	b)	Illustrate the role of error detection and correction in the design of a digital communication receiver.	5M	C05	BL4			
	OR							
11		With considering a suitable example describes the process of linear block and hamming codes.	10M	CO5	BL2			

---00000---