Course Code: 2040415 Roll No: MLRS-R20

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 **Electro Magnetic Theory and Transmission Lines** (ECE)

Time: 3 Hours. Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Define electric field intensity in terms of point charge.	2M	CO1	BL1
	b)	Describe the properties of conductors.	2M	CO1	BL2
	c)	State Biot-Savart's law.	2M	CO2	BL1
	d)	$\label{thm:problem} \textbf{Explain the Boundary conditions for Dielectric to Dielectric medium.}$	2M	CO2	BL4
	e)	Write the wave equation for free space and conducting media.	2M	CO3	BL1
	f)	Write the expression for Brewster angle, critical angle and total internal reflection.	2M	CO3	BL1
	g)	Explain the types of transmission lines.	2M	CO4	BL4
	h)	How does group velocity vary when compared to phase velocity?	2M	CO4	BL1
	i)	What are the advantages of Smith chart?	2M	CO5	BL1
	j)	Explain the brief about $\lambda/4$, $\lambda/2$ and $\lambda/8$ lines.	2M	CO5	BL4

PART-B

(10*5 Marks = 50 Marks)

2	a)	State and Prove Gauss's law. List the limitation of Gauss's law	5M	CO1	BL3
	b)	Derive the Poisson's and Laplace equation for starting from Gauss's law?	5M	C01	BL6
		OR			
3		Two point charges Q1=5C and Q2=1nC are located at $(-1,1,3)$ m and $(3,1,0)$ m respectively .Determine the electric field at Q1 and Q2.	10M	CO1	BL3
4	a)	Write down Maxwell's equation in their general integral form. Derive the corresponding equations for fields varying harmonically with time.	5M	CO2	BL6
	b)	State Ampere's circuits law. Specify the conditions to be met for determining magnetic field strength, H, based on Ampere's circuits	5M	CO2	BL3

5		A rectangular loop of wire in free space joins points $A(1,0,1)$ to $B(3,0,1)$ to $C(3,0,4)$ to $D(1,0,4)$ to A . The wire carries a current of 6 mA, flowing in the direction from B to C. A filamentary current of 15 A flows along the entire z-axis in the direction. Find the total force on the loop	10M	CO2	BL3			
6	a)	Derive the relation between E and H in a Uniform plane wave	5M	CO3	BL6			
	b)	•	5M	CO3	BL1			
	OR							
7		The conductivity of silver is σ = 3 X 10 ⁷ v/m at microwave frequencies. Find the skin depth at 10 GHz	10M	CO3	BL3			
0								
8		Derive all the relations of primary constants transmission lines.	10M	CO4	BL6			
		OR .						
9		The attenuation constant on a 50 ohm distortion less transmission line is $0.01dB/m$. The line has a capacitance of $0.1nF/m$. Determine the resistance, inductance and conductance per meter of the line.	10M	CO4	BL4			
10	a)	Design the equivalent circuits of a transmission lines when 1)length of the transmission line, $L < \lambda/4$, with shorted load 2)when $L < \lambda/4$, with open end 3)When $L = \lambda/4$ with open end	5M	CO5	BL6			
	b)	One end of a lossless transmission line having the characteristic impedance of 75 Ω and length of 1 cm is short circuited. At 3 GHz, What is the input impedance at the other end of the transmission line?	5M	CO5	BL3			
OR								
11		What is the purpose of loading and explain various types of loading of a transmission line?	10M	CO5	BL3			

---00000----