MARRI LAXMAN REDDY

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 Electro Magnetic Fields

(EEE)

Time: 3 Hours.	Max. Marks: 70
I line, 5 Hours	

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

				004	DIO
1.	a)	Derive the expression for energy density in a static electric field.	2M	C01	BL3
	b)	State Coulomb's law	2M	CO1	BL1
	c)	Derive the conditions of a boundary between conductor and	2M	CO ₂	BL3
	C)	dielectric interface.			
	d)	What are the applications of Laplace's and Poison's equations?	2M	CO2	BL1
	e)	Evaluate the Relation between magnetic flux, magnetic flux density.	2M	CO3	BL5
		List the properties of vector magnetic potential.	2M	CO3	BL2
	f)		10	004	DI 4
	g)	State Faraday's laws of electromagnetic induction	2M	CO4	BL1
	h)	List Maxwell's equations for time varying fields.	2M	CO4	BL2
	,		2M	CO5	BL5
	i)	What do you mean by lossy dielectric?			51.0
	j)	Derive the wave equation of electromagnetic wave?	2M	CO5	BL3

PART-B

(10*5 Marks = 50 Marks)

2	a) b)	Derive an expression for electric field intensity due to an electric dipole. Two 6nC point charges are located at $(1,0,0)$ and $(-1,0,0)$ in free space. i) Find V at $P(0,0,z)$ ii) Find V max iii) calculate dv/dz on z axis	5M 5M	C01	BL3 BL3
		OR			
3		State and prove Gauss's law and write limitations of Gauss law.	10M	CO1	BL4
4	a) b)	Derive the ohms law in point form. State and explain continuity equation of current in integral form and point form	5M 5M	CO2 CO2	BL3 BL2

Course Code: 2040206 Roll No:			MLRS	-R20	
5		Derive the expressions for the capacitance of a parallel plate capacitor and the energy stored in it	10M	CO2	BL3
6	a)	Define and explain terms self inductance and mutual inductance with	5M	CO3	BL2
	b)	neat sketch. Derive the expression for magnetic field due to an infinitely long straight filament carrying a direct current 'I' by using Biot – Savart's law.	5M	C03	BL3
		OR			
7	,	Analyze and Explain force between two parallel current carrying conductors and also Determine the force per meter length between two long parallel wires A & B separated by 6 cm in air carrying currents of 42 Amps. (i) In same direction. (ii) In the opposite direction.	10M	CO3	BL4
8	a)	What is displacement current? Explain briefly	5M	CO4	BL2
O	b)	Explain about induced emf and derive the expressions for statically and dynamically.	5M	CO4	BL2
OR					
9		Write and explain differential and integral form's of Maxwell's equations for fields varying harmonally with time	10M	CO4	BL5
10	a)	Derive the expressions for wave equations in electric field in free space.	5M	C05	BL3
	b)	Develop equations of uniform plane waves in phasor form.	5M	CO5	BL6
OR					
11		Define poynting vector and derive the expression for poynting theoremo00oo	. 10M	CO5	BL1