

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 Design and Analysis of Algorithms (CSE, CSI, CSM, IT)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What is the asymptotic lower bound in determining the complexity of an algorithm?	2M	C01	BL1
	b)	Express, in recursive equation form, the time required to search an element from an array of n elements using binary search method?	2M	C01	BL3
	c)	Define Find operation in disjoint sets?	2M	CO2	BL1
	d)	State graph coloring problem?	2M	CO2	BL1
	e)	Explain about optimal solution?	2M	CO3	BL4
	f)	What is job sequencing with deadlines?	2M	CO3	BL1
	g)	Discuss the statement of reliability design problem?	2M	CO4	BL1
	h)	Define Dynamic programming?	2M	CO4	BL1
	i)	What are the additional features required in branch-and-bound when compared to backtracking?	2M	CO5	BL1
	j)	Define State space search tree?	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Solve the recurrence relation T (n) = 27 T (n/3) + Θ (n 3 lg n)	5M	C01	BL3	
	b)	Why do we use asymptotic notations in the study of algorithms? Briefly describe the commonly used asymptotic notations.	5M	C01	BL2	
		OR				
3		Express, in recursive equation form, the time required to search an element from an array of n elements using binary search method.	10M	C01	BL3	
4		Give the statement of sum –of subsets problem. Find all sum of subsets for n=4, $(w1, w2, w3, w4) = (11, 13, 24, 7)$ and M=31.Draw the portion of the state space tree using fixed – tuple sized approach	10M	CO2	BL3	

	5	What is backtracking? Find a solution to the 4-Queens problem using backtracking strategy. Draw the solution space using necessary bounding function.	10M	CO2	BL3
(6	State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits $(P1,P2,P3,P4,P5) = (20,15,10,5,1)$ and deadlines $(d1,d2,d3,d4,d5) = (2,2,1,3,3)$.	10M	CO3	BL3
		OR			
7	7	If the Prim's algorithm is used to find minimum cost spanning tree from a weighted connected graph of n nodes, how many edges of the graph will be selected and how many steps will be required to	10M	C03	BL3
		select those edges?			
8	3 a)	What are the conditions for a problem to be solved using Dynamic Programming?	5M	CO4	BL1
	b)	Write two characteristics that distinguishes as dynamic algorithm from greedy algorithm.	5M	CO4	BL1
		OR			
ç)	Design a recursive solution to the matrix chain multiplication problem. Find an optimal parenthesization of a matrix chain product whose sequence of dimension is	10M	C04	BL6
1	10 a)	State and explain Cooks theorem in detail?	5M	C05	BL4
	b)	Define P, NP, NP complete and NP-Hard problems. Give examples of each.	5M	CO5	BL1
		OR			
1	.1	Give the 0/1 Knapsack LCBB algorithm. Explain how to find optimal solution using variable – tuple sized approach.	10M	C05	BL4
		00000			

Roll No:

MLRS-R20

Course Code: 2040508