

MARRI LAXMAN REDDY ITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Regular End Examination, July 2022 **Mechanics of Solids**

(MECH)

Max. Marks: 70 Time: 3 Hours.

Note: 1. Question paper consists: Part-A and Part-B.

2. In Part - A, answer all questions which carries 20 marks.

3. In Part - B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1. a)	What are the constraints of Euler's formula for buckling column?	2M	CO1	BL1
1. a)	lecture of plantic limit and elasticity?	2M	CO1	BL1
c)	Draw shear force and bending moment diagrams for cantilever	2M	CO2	BL3
ď	beam acted upon by point four.	2M	CO2	BL1
e`	tions of simple handing theory?	2M	CO3	BL1
f)	Danding Street and Radius of	2M	CO3	BL3
- /	Curvature?			
g	What are the different methods of analysis in truss?	2M	CO4	BL1
h	deflection analysis?	2M	CO4	BL1
		2M	CO5	BL3
i)			005	DI 2
j)	Write torsion formulae and discuss all parameters?	2M	CO5	BL2

PART-B

(10*5 Marks = 50 Marks)

2	a)	Draw a stress strain diagram for mild steel and mark critical points	5M	CO1	BL3
	h)	on it with proper explanation. Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick when it is subjected to a tensile load of 60kN. Take	5M	CO1	BL3
		E as 200 GPa			
		OR		204	DI 4
_		The following data refers to a tensile stress conducted on a mild	10M	COI	BL4

The following data refers to a tensile stress conducted on a 3 steel bar

diameter of steel bar = 30 mm = 200 mmgauge length extension at a load of 100KN is 0.139mm load at elastic limit = 230KN maximum load (ultimate load) = 360 KN = 56 mmtotal extension diameter of the rod at failure = 22.25 mm

determine

Course Code: 2040312

Roll No:

MLRS-R20

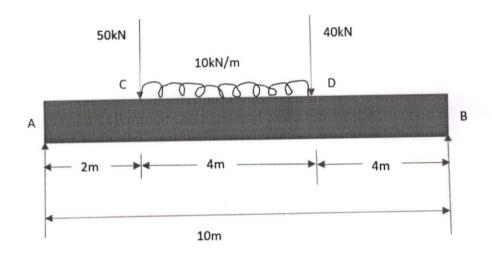
(i) young's modulus (ii) the stress at elastic limit

(iii) ultimate stress(iv) percentage elongation and

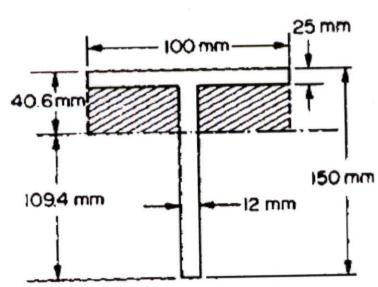
(v) percentage reduction in area.

4 a) A beam of 10 m long is simply supported and carries a load of uniformly varying from 50kN/m at the left end to 150 kN/m at the right end. Draw the shear force and bending moment diagrams

5M CO2 BL4


b) The diameter of the circular cross section of a cantilever beam varies from 240 mm at the fixed end to 60 mm at the free end over a length of 12 m. Determine the maximum stress in the beam due to a uniform distributed load of 1.5 kN/m

5M CO2 BL4


OR

A simply supported beam of length 10m, carries the uniformly distributed load and two point loads as shown in below fig. Draw the SF and BM diagrams for the beam. Also calculate the maximum bending moment.

10M CO2 BL4

6 a) A uniform T-section beam is 100 mm wide and 150 mm deep with a flange thickness of 25 mm and a web thickness of 12 mm. If the limiting bending stresses for the material of the beam are 80 in compression and 160 in tension, find the maximum u.d.l. that the beam can carry over a simply supported span of 5 m. 10M CO3 BL4

OR

How you can find out bending stresses using section modulus of 10M CO3 BL3 rectangular and circular cross section?

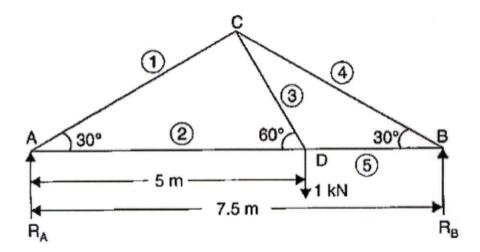
8 a) Prove the relation: $\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$

10M CO4 BL4

Where; M = Bending Moment, $\sigma = Bending stress$

E = young's Modulus

I = Moment of Inertia


y = Distance from neutral axis

R = Radius of curvature

OR

9 Explain Relationship between shear force, bending moment and 10M CO4 BL3 deflection.

10 a) A truss of span 7.5m carries a point load of 1 KN at joint D as shown 10M CO5 BL4 in the below figure. Find the reactions and forces in the members of the truss?

OR

---00000---

Find the thickness of metal necessary for a cylindrical shell of internal diameter 160mm to with stand an internal pressure of 10 N/mm². The maximum hoop stress in the section is not to exceed 45 N/mm².

10M CO5 BL4

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with "A" Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

EXAMINATION BRANCH

Academic Year	2021-2022
Year & Semester	I B. Teeh & I Sem
Regulation	MLRS-R20
Branch	Mechanical
Course Code	2040312
Course Name	Mechanics of solide
Course Faculty's	U. Sudhakar
Course Moderator	U. SU dhabar
Date of Exam	04/07/2022
Reporting Time & Sign	8:45Am& U.Pr

KEY PAPER

QNO	ANSWER	MARKS
a)	Finese is always crookedness in the column and the lad may not be exactly axial. Out of syllabus.	2M
	Elasticity It is defined as the maximum Stress that a material can withstand original shape after before the permanent deformation removal of force orbins on it.	200

ARRI LAXMAN REDDY **UTE OF TECHNOLOGY AND MANAGEMENT**

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
1)	A C C B Shear Force chapterm Bendmy moment chastern B	217
1)	Typel of blams	
	Types of blams (i) cartilever blam) (ii) simply supported blam) (iii) over hanging blam)	
	Continuous beam	2m

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

ANSWER	MARKS
Assumptions of simple bending theory: The beam is initially straight The beam has constant cross section The beam has constant cross section	2m
method of Joints method of sections	2m
macaulay's method is used in finding slopes and deflections at any point of beam. In this method (i) Brackets are to be integrated as a whole (ii) constants of integrations are written after the first term (iv) The section, for which B.M., equation is to be written should be taken in the last part of the	2m
	Assumptions of simple bending theory: The beam is initially straight The beam has constant cross section The beam has constant The beam has constant The section of the

TITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
'i)		(2m)
(i'	$\frac{1}{1} = \frac{co}{2} = \frac{fs}{R}$	2m
2 9)	Strew - Strain diagram - 20000 3m and marking critical points explanation - 2m	(Sm)
6)	Given data -> Im l = 2m b = 50mm t = 40mm p = 60 km c = 200 G/A U = \frac{1}{2} \times	(5m)

ARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO ANSWER	MARKS
3. $d = 30 \text{ mm} = 0.3 \text{ m}$ $l = 200 \text{ mm} = 0.2 \text{ m}$ $w = 100 \times 10^3 \text{ N}$, $6l = 0.139 \text{ mm} = 0.139 \times 10^3 \text{ m}$ $w = 100 \times 10^3 \text{ N}$, $6l = 0.139 \text{ mm} = 0.139 \times 10^3 \text{ m}$ $w = 360 \text{ lw} = 360 \times 10^3 \text{ N}$ Total elongation = $56 \text{ mm} = 56 \times 10^3 \text{ m}$ $ext{lin} = 360 \text{ lw} = 360 \times 10^3 \text{ lw}$ $ext{lin} = 360 \text{ lw} = 360 \times 10^3 \text{ lw}$ $ext{lin} = 360 \text{ lw} = 360 \times 10^3 \text{ lw}$ $ext{lin} = 360 \text{ lw} = 360 \times 10^3 \text{ lw}$ $ext{lin} = $) MARKS

ARRI LAXMAN REDDY

UTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

ONO	ANSWER	MARKS
(4. a)	given data _ Im	
	Formula - 2m	(pm)
	simplification & onswer - 2m	
り	given data - im	(5m)
	Formula - 2m	
	Simplification & Answer - 2m	
,	Reactions - 1m	
S	hear force values - 25 m	
0	ending moment values - 25m near Force diagram - 2m	
B	and moment diagram - 2m	
	4 Comments 10 km	(1000
	to the time to the	(WA)
	10m	
	The state of the s	
	Comment of the contract of the	
	SI diagram	
	S 12 Giry chin	
3		
	Vers de constitut d	

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
6.	given data - 1m 7-section diagram - 1m	(lom)
	Formules - 3M	
	Simplification & answer - 5m	
7.	soction modulas - 2m	(10m)
	Rectangular cross section - 4m	
	circular cross section — 4m	
8.	derivation of $\frac{m}{2} = \frac{G}{g} = \frac{G}{R}$	lom
9.	Relation between shear Force, bending moment and deflection.	
	$\frac{d^2m}{dn^2} = -\frac{dF}{dn} = -W$	(10m)
i.	Figure - 2m Reactions - 200 2m	
F	Reactions - 200 2m Forces in members - method of Joints - 5m	(OM)
	Force table - IM	

UTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
11.	$d = 160 \text{ mm}$ $P = 10 \text{ N/mm}^{2}$ $f_{1} = 45 \text{ A/mm}^{2}$ $f_{1} = \frac{Pd}{2t}$ 2 m	lom
	$t = \frac{pd}{2f}$ $= \frac{10 \times 160}{2 \times 45} = \frac{1600}{90}$ $= \frac{17.77mm}{2} - \frac{17.77mm}{2}$	