

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMEN

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Regular End Examination, December 2022 Hydraulics and Hydraulic Machinery (Civil)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Compare steady flow and unsteady flow	2M	CO1	BL2
	b)	Write down Mannings formulae and Chezy' formulae	2M	CO1	BL1
	c)	Distinguish bwteeen gradually varied flow and rapidly varied flow	2M	CO2	BL2
	d)	What is hydraulic jump	2M	CO2	BL1
	e)	Water is flowing through a pipe at the end of which a nozzle is fitted.	2M	CO3	BL3
	f)	The diameter of the nozzle is 150 mm and the head of water at the center nozzle is 150m. Find the force exerted by the jet of water on affixed vertical plate. The co-efficient of velocity is given as 0.90 Find the force exerted by a jet of water of diameter 150 mm on a stationary flat plate, when the jet strikes the plate normally with a velocity of 35 m/s	2M	CO3	BL3
	g)	Draw a Pelton wheel.	2M	CO4	BL1
	h)	What is specific speed and its use?	2M	CO4	BL1
	i)	Infer monomeric efficiency	2M	CO5	BL1
	j)	Explain utilization factor and capacity factor	2M	CO5	BL4

PART-B

(10*5 Marks = 50 Marks)

2	a)	Distinguish between: (i) Uniform flow and non-uniform flow,	5M	CO1	BL2
	b)	(ii) Steady and unsteady flowDistinguish between: (i) Laminar and turbulent flow and(ii) Critical, sub-critical and super-critical flow in a open channel.	5M	C01	BL2
		OR			
3	a)	Prove that for the trapezoidal channel of most economical section: Half of top width = Length of one of the sloping sides	5M	CO1	BL3
	b)	Derive the expression for most economical rectangular channel.	5M	CO1	BL6

4	a)	Build an expression for critical depth and critical velocity	5M	CO2	BL3
	b)	Illustrate the condition for maximum discharge for a given value of specific energy.	5M	CO2	BL2
		OR			
5	a)	Show that in a rectangular channel:	5M	CO2	BL3
		Critical depth is two-third of specific energy.			
	b)	Show that in a rectangular channel:	5M	CO2	BL3
		Froude number at critical depth is unity.			
,		What do you man by unnecting variables? How one the nonecting	10M	CO2	DI 1
6		What do you mean by repeating variables? How are the repeating variables selected for dimensional analysis?	10M	CO3	BL1
		OR			
7	a)	Show that for a curved radial vane, the work done per second is	5M	CO3	BL2
	b)	given by, $\rho a V_1 \left[V_{w1} u_1 \pm V_{w2} u_2 \right]$ A jet of water of diameter 150 mm strikes a flat plate normally with	5M	C03	BL5
		a velocity of 12 m/s. The plate is moving with a velocity of 6m/s in			
		the direction of the jet and away from the jet. Determine: (i) the force exerted by the jet on the plate, (ii) work done by the jet on the			
		plate per second, (iii) power f the jet, and (iv) efficiency of the jet.			
8		Develop an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression for maximum efficiency of the Pelton wheel giving the relationship between the jet speed and bucket speed.	10M	CO4	BL6
		OR			
9		Distinguish between: (a) The impulse and reaction turbines, (b) Radial and axial flow turbines, (c) Inward and outward radial flow turbine, and (d) Kaplan and propeller turbines.	10M	CO4	BL4
10	a)	Define cavitation. What are the effects of cavitation? Give the	5M	CO5	BL1
		necessary precautions against cavitation.	516	005	DI C
	b)	Draw and discuss the operating characteristics of a centrifugal pump.	5M	CO5	BL6
		OR			
11	a)	What is the difference between single-stage and multistage pumps?	5M	CO5	BL5
11	aj	Explain multistage pump with			
		(a) impellers in parallel, and (b) impellers in series	EM	COE	BL5
	b)	A centrifugal pump is to discharge 0.12m ³ at a speed of 1400 r.p.m. against a head of 30m. The diameter and width of the impeller at	5M	CO5	ргэ
		outlet are 25 cm and 5 cm respectively. If the manometric efficiency			
		is 75%, determine the vane angle at outlet.			
		00000			

Course Code: 2050119 Roll No:

BL - Blooms Taxonomy Levels

MLRS-R20