Course Code: 2050508

Roll No:

MLRS-R20

19/12/22 (FN)

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMEN

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Regular End Examination, December 2022 Design and Analysis of Algorithms (CSD)

(CSD)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Write the Space Complexity and Time Complexity with examples.	2M	CO1	BL1
	b)	List the applications of Binary search.	2M	CO1	BL2
	c)	What is a spanning tree? Write the minimum cost spanning trees.	2M	CO2	BL1
	d)	Is Dijkstra single source shortest path algorithm? Justify the statement.	2M	CO2	BL2
	e)	What is reliability design?	2M	CO3	BL1
	f)	What is the complexity of optimal binary tree?	2M	CO3	BL1
	g)	List the application of the backtracking.	2M	CO4	BL2
	h)	What is meant by Hamiltonian cycle?	2M	CO4	BL1
	i)	What is the basic principle of branch and bound technique?	2M	CO5	BL1
	j)	Write the classes of P and NP.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Explain various Asymptotic notations with the properties.	5M	CO1	BL3	
	b)	Discuss the Quick sort algorithm. Analyze the time complexity in worst case	5M	CO1	BL4	
		OR				
	a)	Define omega notation. Explain the terms involved in it. Give an example.	5M	CO1	BL2	
3	b)	Explain in detail about Merge sort. Show how it works with the following data set {100,300,150,450,250,350,200,400,500}	5M	CO1	BL3	
4	a)	What are the steps required to develop a greedy algorithm? Discuss	5M	CO2	BL2	
	b)	Explain the method of finding the minimum spanning tree for a connected graph using Prim's algorithm.	5M	CO2	BL3	

Discus the problem of job sequencing with deadlines by taking an CO2 BL4 5M example. CO2 5M BL4

b)

	6 2 21
11/	P 10 11 6
O T	15 \12 \(4 \)
13	2 14 17 8
図	3 5

Find the minimum spanning tree using prim's algorithm.

6	a)	Using branch problem.	and bound	technique	explain t	the 0/1	knapsack	5M	C03	BL3
	b)	Explain the Optimal binary search trees.					5M	CO3	BL4	
					OR					*
7	Find the optimal binary search tree for the key and probabilities given						10M	CO3	BL2	
		Key	A	В	С	D				
		probabilities	0.1	0.2	0.4	0.3				

Explain the N-Queens problem with an algorithm 8

10M CO4 BL3

CO4

CO5

BL4

BL4

OR

Generalize Hamiltonian so that it processes a graph whose edge 10M 9 have costs associated with then and finds a Hamiltonian cycle with minimum cost. You can assume that all edge costs are positive.

10 a) Discuss how these bound are useful in Branch and Bound methods. C05 BL3 5M

b) Explain the strategy to prove that a problem is NP hard 5M

Discuss the method of reduction to solve TSP problem using Branch 10M BL3 CO5 11 and Bound

---00000---

CO - Course Outcome

BL - Blooms Taxonomy Levels