

MARRI LAXMAN REDDY E OF TECHNOLOGY AND MANAGEMENT (FN)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B.Tech I Sem Regular End Examination, December 2022 **Automata Theory and Language Processors** (CSM)

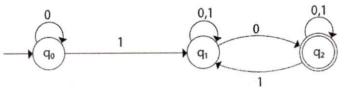
Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A


(10*2 Marks = 20 Marks)

1.	a)	Write the regular expression that represents Identifiers	2M	CO1	BL1
	b)	Differentiate between NFA and DFA	2M	CO1	BL2
	c)	Differentiate compiler and interpreter.	2M	CO2	BL2
	d)	Compare various LR Parsers.	2M	CO2	BL2
	e)	What is Ambiguous grammar? Give Example.	2M	CO3	BL1
	f)	Differentiate synthesis and inherited attributes.	2M	CO3	BL2
	g)	Why are quadruples preferred over triples in an optimizing compiler?	2M	CO4	BL1
	h)	What is common sub expression elimination?	2M	CO4	BL1
	i)	For the code given in 1.(J) generate the basic blocks and write the rules.	2M	CO5	BL1
	j)	Generate three address code for the given pseudo code	2M	CO5	BL3
		while(i<=100)			
		${A=A/B*20; ++i;}$			
		<pre>print(A value) }</pre>			

PART-B

(10*5 Marks = 50 Marks)

2	a)	Given $1 (0 + 1)^* 0$ regular expression construct a NFA with and without	5M	CO1	RF3
	b)	epsilon transition? Generate the regular expressions for Identifiers and Constants in C language and convert them to NFA?	5M	CO1	BL3
		OR			
3	a)	How to recognize various tokens of high level language program? Write the regular expressions and transition diagrams for each.	5M	CO1	BL1
	b)	Convert the given NFA to DFA.	5M	CO1	BL3

Construct a Predictive parsing table for the Grammar $E \rightarrow E + T/T$; $T \rightarrow T^*F/F$; $F \rightarrow (E)/id$.

5M CO2 BL3

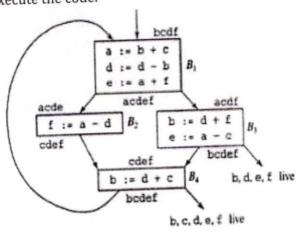
	Co	urse Code: 2056602	Roll N	0:	MLRS-	R20			
		Construct FIRST and FOLLO	OW for the Gra			5M	CO2	BL3	
	b)	$E \to E + T/T$, $T \to T^*F/F$, $F \to (1)$	E)/id.						
				OR	0	514	CO2	BL3	
	-1	Eliminate left recursion in t	the following	grammar A –	\rightarrow ABd Aa a, B \rightarrow Be b	5M	CO2		
5	a) b)	Differentiate between Top	down and bot	tom up parsi	ing techniques.	5M	CO2	BL2	
				I T Convo	reion	5M	CO3	BL4.	
6	a)	Explain in brief about Type checking and Type Conversion					CO3	BL3	
	b)	Give a grammar G				5M			
	,	N	lumber →	Sign List					
		Si	ign →	<u>+</u>					
				=					
		Li	ist →	List Bit					
			1	Bit					
		В	it →	0					
				1	makes the				
		Find the synthesized and i	nherited attri	butes of corr	responding augmented				

grammar of G that compute the decimal value of signed binary number.

OR

7	a)	Explain about Chomsky hierarchy about different grammars with suitable	5M	CO3	BL4
,	,		5M	CO3	BL3
	b)	examples Consider the grammer given in 6.(b) add the rules to compute the decimal value of signed binary number			
0	ره	Translate the expression $-(a+b)*(c+d)+(a+b+c)$ in to quadruple, triple and	5M	CO4	BL5
0	aj	indirect triple. And list advantages and disadvantages. What is a Flow Graph? Explain how a given program can be converted in to a	5M	CO4	BL4
	b)	What is a Flow Graph? Explain now a given program can be			

Flow graph? OR Translate the given expression into Quadruples, triples and indirect triples


BL5 CO4 5M

(a+b)*(c+d)+(a*b/c)*b+60. And list advantages and disadvantages. b) Explain in brief about peephole optimization techniques.

BL4 CO4 5M

BL1 CO5 How the intermediate code is transformed into target object code? 5M Construct the DAG for below piece of code BL3 CO5 5M 10 $t_1 = a + b$; $t_2 = t_1 + c$; $t_3 = t_1 \times t_2$

OR BL3 Given a below flow graph find the minimum number of registers are required CO5 5M 11 a) to execute the code.

b) For the above graph generate the machine code using assigned registers.

BL3 CO5 5M

9