

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Regular End Examination, December 2022

Control Systems

(ECE/EEE)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Explain how feedback effects the overall gain of the system.	2M	CO1	L2
	b)	What do you mean by mechanical translational systems?	2M	CO1	L1
	c)	Why derivative controller is not used alone in control systems?	2M	CO2	L2
	d)	A unity feedback system has a open loop transfer function of	2M	CO2	L3
		$G(s) = \frac{10}{(s+1)(s+2)}$. Determine steady state error for unit step input.			
	e)	State limitations for Routh's stability.	2M	CO3	L2
	f)	Draw the Root-Locus plot of G(S) H(S) = $\frac{K}{S+P}$.	2M	CO3	L3
	g)	What is the effect on polar plot if a non-zero pole is added to the transfer function?	2M	CO4	L2
	h)	Write the differences between lead and lag compensator.	2M	CO4	L4
	i)	What is the characteristic equation of a system for generalized State Matrix?	2M	CO5	L3
	j)	State the properties of state transition matrix.	2M	CO5	L1

PART-B

(10*5 Marks = 50 Marks)

2 a) Explain open loop control system and closed loop control system 5M CO1 L4 with example.
 b) For the block diagram shown below, determine the transfer 5M CO1 L3 function ^C/_P.

3 *a) Find the closed loop transfer function of the system shown below

5M	5M		

5M CO1 L3

- b) Define the terms i) mass ii) linear spring iii) friction, for translational motion subject to mathematical modelling of mechanical systems.
- 5M CO1 L1
- 4 Derive the time domain specifications of second order system with unit step input.
- 10M CO2 L2

CO₂

CO3

L2

L3

L4

10M

5M

OF

- A unity feedback system has a forward path transfer function $G(s) = \frac{8}{s(s+2)}$. Find the value of damping ratio, undamped natural frequency of the system, percentage over shoot, peak time and settling time.
- 6 a) Determine the RH stability of given characteristic equation, 5M CO3 L5 $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$.
 - b) Determine the range of values of K for the stability of a unity feedback system whose open loop transfer function is given $byG(s) = \frac{K}{s(s+1)(s+2)}$

OR

- 7 The open loop transfer functions of a unity feedback are given below. 10M CO3 L3 Sketch the root locus. $G(s) = \frac{K}{s(s+3)(s^2+2s+2)}$.
- The open loop transfer function of a system is given by: 10M CO4 $G(s) = \frac{20}{s(s+1)(1+0.01s)}$ Sketch the Bode plot and determine the gain Margin and Phase Margin.

OR

9 Explain in detail about lag-lead compensator technique.

- 10M CO4 L4
- 10 a) Define: (i) state (ii) State Variables (iii) State Space representation 5M CO5 L1

 Determine the state model of the system whose transfer function is: 5M CO5 L5
 - b) $T(s) = \frac{2(s+5)}{(2+s)(3+s)(4+s)}$ and draw block diagram representation of the state model.

OR

11 Consider a system with state model given below:

10M CO5 L4

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 5 \\ -24 \end{bmatrix} u, Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \end{bmatrix} u$$

Verify the system is observable and controllable.