

COURSE CONTENT

WATER RESOURCE AND IRRIGATION ENGINEERING

IV Semester: CE

Course Code	Category	Hours/ Week			Credits	Maximum Marks			
2540118	Core	L	T	P	C	CIA	SEE	Total	
		3	0	0	3	40	60	100	
Contact Classes: 45		Tutorial Classes: Nil			Practical Classes: Nil		Total Classes: 45		
Prerequisites: Probability & Statistics, Fluid Mechanics									

Course Overview :

Water Resource and Irrigation Engineering focuses on the planning, development, and management of water resources for agriculture and society. It covers hydrology, irrigation systems, canal design, water conservation, drainage, and flood control, emphasizing sustainable practices, efficient water use, and engineering solutions to meet agricultural, industrial, and municipal water demands.

Course Objectives: The objective of this Course is to

- Understand the fundamental concepts of Engineering Hydrology.
- Derive various formulae used in estimation of abstractions and runoff.
- Solve problems in hydrograph analysis and groundwater.
- Estimate the water requirement of crops and also design the dams.
- Study types of spillways and design procedures for distribution systems.

Course Outcomes: At the end of the course, students will be able to

- Describe different concepts of engineering hydrology.
- Apply appropriate formula to estimate runoff.
- Apply fundamental principles of hydrograph analysis and estimate ground water Resources.
- Estimate water requirement for crops and design hydraulic structures.
- Apply a suitable design methodology for distribution systems.

UNIT I - Precipitation

Introduction-Concepts of Hydrologic Cycle, Global Water Budget, Applications in Engineering. Precipitation-Forms of Precipitation, Measurement of Precipitation: Recording and Non-Recording Types, Mass Rainfall Curves, Characteristics Mean Rainfall on A Basin – Arithmetic, Theissen and Isohyetal Methods, Intensity – Duration Analysis, PMP, Missing Rainfall Data – Estimation, Consistency of Rainfall Records, Double Mass Curve, Rain Gauge Network Analysis.

UNIT II - Abstractions from Precipitation and Runoff

Abstractions from Precipitation-Evaporation Process, Evaporimeters, Analytical Methods of Evaporation Estimation, Reservoir Evaporation and Methods for Its Reduction, Evapo transpiration, Measurement of Evapo transpiration, Evapo transpiration Equations, Potential Evapo transpiration Over India, Actual Evapo transpiration, Interception, Depression Storage, Infiltration, Infiltration Capacity, Measurement of Infiltration, Modeling Infiltration Capacity, Classification of Infiltration Capacities, Infiltration Indices.

Runoff-Components of Runoff, Factors affecting Runoff, Basin Yield, SCS-CN Method of Estimating Runoff, Flow Duration Curves, Mass Curve of Runoff – Analysis.

UNIT III - Hydrographs and Groundwater Hydrology

Hydrographs-Hydrograph – Components, Separation of Hydrograph into Base Flow and Effective Rainfall – Methods, Unit Hydrograph – Principles, Derivation of UH of Isolated Unit Storms.

Groundwater Hydrology - Occurrence, Movement and Distribution of Groundwater, Aquifers – Types, Specific Yield, Permeability, Storage Coefficient, Transmissibility, Darcy's Law. Well Hydraulics-Steady Radial Flow into Well for Confined and Unconfined Aquifers, Recuperation Tests.

UNIT IV - Water Withdrawals, Dams and Reservoirs

Water Withdrawals- Water Requirement of Crops -Crops And Crop Seasons In India, Cropping Pattern, Duty and Delta; Quality of Irrigation Water; Soil-Water Relationships, Root Zone Soil Water, Infiltration, Consumptive Use, Irrigation Requirement, Frequency of Irrigation; Methods of Applying Water to the Fields: Surface, Sub-Surface, Sprinkler and Trickle /Drip Irrigation.

Dams and Reservoirs-Classification of Dams, Gravity Dams: Forces on Gravity Dams, Causes of Failure, Stress Analysis, Elementary and Practical Profile. Arch and Buttress Dams, Economic Height of Dam, Selection of Suitable Site. Reservoirs- Types, Capacity of Reservoirs, Yield of Reservoir, Sedimentation.

UNIT V - Spillways and Distribution Systems

Spillways- Components of Spillways, Types of Gates for Spillway Crests.

Distribution Systems- Canal Systems, Alignment of Canals, Canal Losses, Estimation of Design Discharge. Design of Channels-Rigid Boundary Channels, Alluvial Channels, Kennedy's and Lacey's Theory of Regime Channels. Canal Outlets: Non-Modular, Semi-Modular and Modular Outlets. Water Logging: Causes, Effects and

Remedial Measures. Lining of Canals, Types of Lining. Drainage of Irrigated Lands: Necessity, Methods.

TEXT BOOKS:

1. Hydrology, P. Jaya Rami Reddy, 3rd edition, Laxmi Publications, 2018.
2. Irrigation and Water Resources Engineering, G L Asawa, New Age Publishers, 2008.
3. Irrigation Engineering and Hydraulic structures by Santhosh kumar Garg Khanna Publishers

REFERENCES:

1. Elements of Engineering Hydrology, V.P. Singh, Tata McGraw-Hill, 2017.
2. Ground water Hydrology, David Keith Todd, John Wiley & Son, 2015.
3. Textbook of irrigation Engineering & Hydraulic Structures, R.K. Sharma, Oxford & IBH Publishing Company, 2023.